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Abstract

The commercially available software package FemLab is evaluated as solver for building physics problems based on partial di0erential
equations (PDEs). The software is designed to simulate systems of coupled PDEs which may be 1D, 2D or 3D, non-linear and time
dependent. An important feature of FemLab is that the user can focus on the model (PDE coe6cients on the domain and boundary) and
does not have to spend much time on solving and visualization. In this paper, 4 cases are considered. First, in order to illustrate how
FemLab works, an example including the complete code for solving as well as the results are given for a simple 2D steady-state heat
transfer problem. In the next 2 cases, the reliability is tested for two very di0erent building physics problems: A 2D dynamic air<ow
problem, modeled using Navier–Stokes and buoyancy equations, and a 1D dynamic non-linear moisture transport in a porous material.
These simulation results are validated and show a good agreement with measurements. In the last case, FemLab’s capability of simulating
3D problems is shown by a dynamic combined heat and moisture transport problem. This example is a 3D extension of a given 2D problem
from IEA Annex 24 (Final Report—Task 1). For all models the crucial part of the codes (geometry, PDEs and boundary speci@cations)
are given. The FemLab software is written in the MatLab environment (The Mathworks, Inc. MatLab manual, Version 5.3, 1998) and
therefore it is possible to use the visualization tools, toolboxes and all other programs written in MatLab. The evaluation illustrates the
powerful and <exible nature of FemLab for solving scienti@c and engineering building physics problems. ? 2002 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Many scienti@c problems in building physics can be de-
scribed by PDEs. There are a lot of software programs
available in which one speci@c PDE is solved. They are de-
veloped in order to get the simulation results in a short time
and most often a lot of e0ort has been put into the simplic-
ity of input of data, e.g. geometrical data. A disadvantage is
that they often are not very <exible when the user wants to
change or combine models. Another drawback is that they
most often act as black boxes. Another category of com-
mercially available software like FemLab [1] is developed
speci@cally for solving PDEs where the user in principle
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can simulate any system of coupled PDEs. Practical
physics=engineering problems in the area of heat transfer,
electromagnetism, structural mechanics and <uid dynamics
can be solved with the software. The practical problems
solved in this paper are: a 2D thermal bridge problem, a 1D
moisture transport problem, a 2D air<ow problem and a 3D
combined heat and moisture transport problem. One of the
main advantages of FemLab is that the user can focus on
the model (PDE coe6cients on the domain and the domain
boundary) and does not have to spend much time on solv-
ing and visualization. The scientist can concentrate on the
physics behind the models and the engineer can calculate
details for designing purposes using validated models.
Section 2 shows some features of FemLab and how it

works by a simple 2D steady state heat transfer problem.
In Section 3 the quality of the numerical solvers is tested
by solving two very di0erent building physics problems: A
2D dynamic air<ow problem and a 1D dynamic non-linear
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Nomenclature

A; B constants
D di0usivity (m2=s)
DF moisture di0usivity (m2=s), dependent on

temperature=moisture content
DT temperature di0usivity (m2=s), dependent on

moisture content
Dw moisture di0usivity (m2=s), dependent on

moisture content
Gr Grasshof number (dimensionless)
hc heat transfer coe6cient (W=m2 K)
K heat conductivity (W=m K)
n outward unit normal (dimensionless)
p pressure (Pa)
Pr Prandl number (dimensionless)
Re Reynolds number (dimensionless)
t time (s)
T temperature (◦C), ((dimensionless) when

scaled)
u solution of the PDE(s), e.g. temperature, mois-

ture content, etc.
u; v velocity (scaled) (dimensionless)

w moisture content (kg=m3)
x; y; z positions (m)
� Lagrange multiplier
� domain
� boundary of domain
� moisture content (m3 water=m3 solid material)
’ heat <ux (W=m2)

PDE coe1cients

a; c; da ; f; F; g; G; h; q; r; R; !; "; #; $

Subscripts

0 initial value at t = 0
i internal
e external
concr concrete
insul insulation
max maximum

moisture transport in a porous material. The solutions are
compared with measurements. There are not many software
packages available which are capable of simulating 3D dy-
namic combined heat and moisture transport problems. In
Section 4 it is shown how this can be done using FemLab.

2. How FemLab works

FemLab [1] is a toolbox written in MatLab [2]. It solves
systems of coupled PDEs (up to 32 independent variables).
The speci@ed PDEs may be non-linear and time dependent
and act on a 1D, 2D or 3D geometry. The PDEs and bound-
ary values can be represented by two forms. The coe1cient
form is as follows:

da
@u
@t

−∇ · (c∇u+ !u− #) + "∇u+ au= f in � (1a)

n · (c∇u+ !u− #) + qu= g− � on @� (1b)

hu= r on @� (1c)

The @rst equation (1a) is satis@ed inside the domain �
and second (1b) (generalized Neumann boundary) and
third (1c) (Dirichlet boundary) equations are both satis@ed

on the boundary of the domain @�. n is the outward
unit normal and is calculated internally. � is an unknown
vector-valued function called the Lagrange multiplier.
This multiplier is also calculated internally and will only
be used in the case of mixed boundary conditions. The
coe6cients da ; c; !; "; #; a; f; g; q and r are scalars,
vectors, matrices or tensors. Their components can be func-
tions of the space, time and the solution u. For a stationary
system in coe6cient form da = 0. Often c is called the
di6usion coe1cient, ! and " are convection coe1cients,
a is the absorption coe1cient and # and f are source
terms.
The second form of the PDEs and boundary conditions is

the general form:

da
@u
@t
+∇ · $ = F in �; (2a)

− n · $ = G + � on @�; (2b)

R= 0 on @�: (2c)

The coe6cients $ and F can be functions of the space,
time, the solution u and its gradient. The components of
G and R can be functions of the space, time, and the
solution u.
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Fig. 1. The geometry of the 2D thermal bridge example.

Table 1
Boundary speci@cations of the 2D thermal bridge problem, where T is the
temperature on the boundary and Ti and Te, respectively are the internal
and external temperatures

Boundary Boundary Boundary segment Boundary
segment type length (m) condition (W=m2)

b1 External 1.0 ’ = hc∗e (Te − T )
b2 Adiabatic 0.2 ’ = 0
b3 Adiabatic 0.1 ’ = 0
b4 Internal 0.8 ’ = hc∗i (Ti − T )
b5 Internal 0.7 ’ = hc∗i (Ti − T )
b6 Adiabatic 0.2 ’ = 0
b7 Adiabatic 1.0 ’ = 0

  %CONSTANTS 
hi=7.7;   %heat transfer coefficient internal 
he=25;   %heat transfer coefficient external 
Ti=20;    %air temperature internal 
Te=-10;   %air temperature external 
Kconcr=1;  %heat conduction concrete 
Kinsul=0.03;  %heat conduction insulation 

  %GEOMETRY: poly2(XDATA,YDATA) ; 2D polygon 
CONCR=poly2([0 0 1 1 0.2 0.2],[0 1 1 0.8 0.8 0]);  %concrete 
INSUL=poly2([0.2 0.2 1 1],[0.7 0.8 0.8 0.7]); %insulation 
fem.geom=CONCR+INSUL;       %fem geometry 
fem.dim=1;      %One component

  %COEFFICIENTS OF THE PDE/Boundary problem 
fem.equ.c={Kconcr  Kinsul };    % fem coefficient c 
fem.bnd.g={he*Te 0 0 hi*Ti hi*Ti 0 0};  % fem coefficient g  
fem.bnd.q={he    0  0 hi    hi    0 0}; % fem coefficient q  
fem.mesh=meshinit(fem);      % intialize mesh 
fem.sol=femlin(fem);        % solve, steady problem

  %OUTPUT MESH, SOLUTION 
meshplot(fem)     % plot mesh 
q=posteval(fem,'u');   % post processing data
postplot(fem,'tridata',q,'tribar','on') % plot solution 

Fig. 2. The complete FemLab code for solving the 2D thermal bridge problem.

Given the geometry data, an initial @nite element mesh
is automatically generated by triangulation of the domain.
The mesh is used for discretisation of the PDE problem and
can be modi@ed to improve accuracy. The geometry, PDEs
and boundary conditions are de@ned by a set of @elds sim-
ilar to the structure in the language C. A graphical user
interface is used to simplify the input of these data. For
solving purposes FemLab contains speci@c solvers (like
static, dynamic, linear, non-linear solvers) for speci@c PDE
problems.

Example. FemLab code and results of a 2D stationary ther-
mal bridge.

A 2D stationary thermal bridge problem is used as an
example of how FemLab works. In Fig. 1 the geometry of
the 2D thermal bridge problem is shown. In Table 1 the
lengths and boundary conditions of each boundary segment
are given. The PDE model for the inside of the domain is
given by

∇ · (K∇T ) = 0; (3)

where K is the heat conductivity and T is the temperature.
Using the coe6cient form (1a) and the model (3), it fol-
lows that u equals T and the coe6cients of (1a) are all zero
(a = da = f = ! = " = # = 0) except c. The c coe6cient
equals the heat conductivities at the sub-domains concrete
(Kconcr) and insulation (Kinsul). The boundary values are
heat <uxes and so the Neumann condition is applied. For
example, boundary condition b1: ’ = hc∗e (Te − T ) is rep-
resented by taking q = hce; g = hc

∗
eTe in Eq. (1b). Note
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Fig. 3. The mesh of the 2D thermal bridge problem.

Fig. 4. The solution (temperature distribution) of the 2D thermal bridge problem.

that the term n ·c∇u in (1b) represents the heat <ow into the
domain and is calculated internally and the term � in (1b)
is zero because mixed boundary conditions are not applied

in this example. Fig. 2 shows the complete FemLab code.
The default values of all PDE and boundary coe6cients
are 0. Also some comments (%) are included for better
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fem.geom=solid1([0 0.024]);  % 1D geometry 
Dw=['(3.2e-9)*exp(29*u)']; % diffusivity fired clay brick,type I 
fem.dim=1;       % one component 
fem.equ.c={Dw};     % c equals diffusivity  
fem.equ.da={1};    % da equals 1 
fem.bnd.h={1    0};   % boundary value 
fem.bnd.r={0.27 0};    % boundary value 
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Fig. 5. The PDE and boundary conditions (upper) and the corresponding part of the FemLab code (lower) of the 1D moisture transport problem.

Fig. 6. Measured and simulated moisture content pro@les versus lambda of the 1D moisture transport problem. Left-hand side: measured moisture
contents, right-hand side: simulated moisture contents.

understanding of the code. The initial mesh is presented in
Fig. 3, and the solution in Fig. 4. This example shows the
transparency, easy-to-use and <exibility of PDE models in
FemLab.

3. Testcases for reliability

In [1] examples are already present which show the ac-
curacy and reliability of FemLab. However, there are no
validations for typical building physics problems. Speci@c
for validating building physics simulations in FemLab,
this section deals with two (very di0erent) time dependent
non-linear problems. Each problem is solved and compared
with measured data.

3.1. 1D moisture transport in a porous material

The water absorption in an initially dry brick cylinder
(length 24 mm) is studied. All sides except the bottom are
sealed. This side is submerged in water at t = 0 s. The

Fig. 7. The geometry and boundary conditions for the 2D-air<ow
problem.
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   %Variables: u1=u; u2=v; u3=p; u4=T  
%           u1x = du1/dx, etc.  

eta=1/Re;beta=Gr/(Re*Re);alpha=1/(Re*Pr); %parameters 

fem.dim=4; 
fem.equ.da={{1; 1; 0; 1}}; 
fem.equ.F={{'-(u1.*u1x+u2.*u1y+u3x)';... 
            '-(u1.*u2x+u2.*u2y+u3y)+beta*u4';... 
            '-(u1x+u2y)';... 

 '-(u1.*u4x+u2.*u4y)'}}; 
fem.equ.ga={{{'-eta*u1x'; '-eta*u1y'};... 

{'-eta*u2x'; '-eta*u2y'};... 
             0;... 

{'-alpha*u4x'; '-alpha*u4y'}}}; 

fem.bnd.r={ {'-u1'; '-u2'; 0; '0-u4'} ... 
{'-u1'; '-u2'; 0; '0-u4'} ... 
{'1-u1'; '-u2'; 0; '1-u4'} ... 

    {'-u1'; '-u2'; 0; '0-u4'} ... 
    {'-u1'; '-u2'; 0; '0-u4'} ... 
    {'-u1'; '-u2'; 0; '0-u4'} ... 
    {0; 0; '-u3'; 0} ... 
            {'-u1'; '-u2'; 0; '0-u4'} }; 

fem=femdiff(fem); % calculate divergence gamma on domain 

Fig. 8. The PDE model and the corresponding FemLab code for the 2D-air<ow problem.

PDE and boundary conditions for this problem are shown
in Fig. 5 (upper part). The corresponding FemLab code for
de@ning the geometry, PDE and boundaries is shown in
the lower part of Fig. 5. The coe6cient form (1) is used.
The results of measured water absorption of several brick
materials based on [3] are shown in Fig. 6, left-hand side.
The moisture pro@les are shown versus lambda (lambda
is de@ned by the position divided by the square root of
the time). For each material the di0usivity as a function
of the moisture content is given [3] and used to simulate
the corresponding pro@les. The simulation results in Fig. 6,
right-hand side, show a good agreement with the measured
pro@les.

3.2. 2D air7ow in a room

This example from [4] deals with the velocity and tem-
perature distribution in a room heated by a warm air stream.

In Fig. 7 the geometry and boundary conditions are pre-
sented. The problem is modeled by 2D incompressible
<ow using the Boussinesq approximation with constant
properties for the Reynolds and Grasshof numbers. The
general form (2) is used for this type of non-linear prob-
lem. In Fig. 8, the PDE model, the corresponding PDE
coe6cients of (2a) and the corresponding part of the code
are given. In [4] the problem is solved and validated with
measurements for several combinations of Re and Gr. In
Fig. 9 these results are presented. The left-hand side shows
the results obtained by [4] and the right side show the
corresponding FemLab results. The results are in good
agreement.

3.3. Discussion on reliability

The test cases in this section show that FemLab is very
reliable even for a highly non-linear problem such as



A.W.M. van Schijndel / Building and Environment 38 (2003) 319–327 325

Fig. 9. Dimensionless temperature contours comparison of the validated simulation results of [4] (left-hand side) with the FemLab results (right-hand
side) for the 2D-air<ow problem.

convective air<ow. Furthermore, for all the simulation
results presented in this paper, the default mesh genera-
tion and solver are used. So good results can be obtained
without a deep understanding of the gridding and solving
techniques. The simulation times (based on processor Pen-
tium 3; 500 MHz) ranged from fast (order ∼ seconds) for
linear problems such as the 2D thermal bridge example,
medium (order ∼ minutes) for non-linear problems in the
coe6cient form such as the 1D moisture transport example
to high (order ∼ hours) for highly non-linear problems in
the general form such as the air<ow problem.

4. 3D combined heat and moisture transport

In this section the challenging problem of simulating
combined heat and moisture transport for a 3D geometry is
presented. The problem is based on a 2D-problem [5] but is
now extended to a 3D problem. A brick specimen, initially
dry and two of the <anks sealed, is placed with its lower
surface about 1 cm under water. In Fig. 10, the geometry is
presented. The PDE model, boundary conditions and cor-
responding part of the code written in the coe6cient form
(1), are shown in Fig. 11. In the PDE model 3 material
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Fig. 10. Geometry for the 3D combined heat and moisture transport.

0)0(,max)0(:

)(),(:

0:

,0)0(,0)0(

))((

)),()((

TzTwzwbottom

wiwBwTiTATsidesopen

wTsidessealed

TtTwtw

TwDT
t

T

TwTDFwwDw
t

w

====
−=

∆

−=

∆ =

∆

=

∆

====

∆=
�
�

∆

+∆ ∆ .=
�
�

fem.dim=2; 
fem.form='coefficient'; 
fem.equ.da={{1; 1}}; 
fem.equ.c={'Dw(w)' 'DF(T,w)' 0 'DT(w)'}; 

fem.bnd.g={ {0    0}  {B*wi A*Ti }{0 0} {0 0}{0 0}{0 0}};
{0 0}{0 0}{0 0}};
{0 0}{0 0}{0 0}};
{0 0}{0 0}{0 0}};

fem.bnd.q={ {0    0}  {B    A    }{0 0} 
fem.bnd.h={ {1    1}  {0    0}{0 0}
fem.bnd.r={ {wmax T0} {0      0}{0 0} 

 ∆ .

Fig. 11. The PDE model and the corresponding FemLab code for the 3D
combined heat and moisture transport.

properties functions are de@ned: Dw(w); DF(T; w) and
DT(w). These functions are calculated using the material
properties presented in [5] and are shown in Fig. 12. The
results of the simulated moisture distribution initially and
after 5, 10 and 70 days are visualized by slices and planes
with equivalent moisture content, in Fig. 13. The extension
of 3D modeling with di0erent materials is left over for future
research.

5. Conclusions

FemLab is evaluated as a solver for building physics
problems based on partial di0erential equations (PDEs).
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Fig. 12. The material properties for the PDE coe6cients Dw(w); DT(w)
and DF(T; w) based on [5].

Typical building physics problems such as moisture trans-
port in a porous material, dynamic air<ow and combined
heat and moisture transport are relatively easy to model. The
simulation results of the models used including 1D–3D
geometries show a good agreement with measurements.
The FemLab software is written in the MatLab environment
and therefore it is possible to make use of the visualisation
tools, toolboxes and all other programs written in MatLab.
The evaluation illustrates the powerful and <exible nature
of FemLab for solving scienti@c and engineering building
physics problems.
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Fig. 13. 3D moisture distribution pro@les for 0 days (top), 5 days (middle)
and 70 days (bottom). Left-hand side shows vertical slices and right-hand
side shows iso surfaces.
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